基于DFT與ECA的滾動(dòng)軸承故障診斷
振動(dòng).測(cè)試與診斷
頁(yè)數(shù): 8 2024-08-15
摘要: 針對(duì)滾動(dòng)軸承故障診斷中傳統(tǒng)卷積神經(jīng)網(wǎng)絡(luò)(convolutional neural networks,簡(jiǎn)稱(chēng)CNN)提取特征的感受野受限于卷積核大小的問(wèn)題,提出了一種結(jié)合離散傅里葉變換(discrete Fourier transform,簡(jiǎn)稱(chēng)DFT)和高效通道注意力(efficient channel attention,簡(jiǎn)稱(chēng)ECA)的卷積神經(jīng)網(wǎng)絡(luò)模型(convolutional... (共8頁(yè))